Plant Lifecycle Management Fortum Thermal Production and Power Solutions

2

Panndagarna 2016, Ulla McNiven 12 April 2016, Karlstad

Fortum

Contents

Fortum in a nutshell Value Creation with Plant Lifecycle Management Plant Lifecycle Management Services and Example Cases Asset Lifecycle Management Strategy at the plants Tools and Methods for implementing the Strategy

Fortum in brief

4

C

Fortum – Forerunner in clean energy

MEGATRENDS Climate change Urbanisation	MISSION			
Active customers Digitalisation, new technologies		mers with energy s e life, and we delive		nprove
VISION Forerunner in clean energy	Drive	Create solutions	Grow in solar and	Build new energy
	and industry transformation	for sustainable cities	wind	ventures
MUST-WIN-BATTLES				
Put the customerEstablish a culturein the centreof speed and agility	Digitalise our busin for maximum scalal			ompetitive markets regulation

Success through a shared perspective in thermal solutions: Power Solutions/Fortum's expert services in brief

- Fortum has extensive references in commissioning, operating, maintaining and upgrading thermal power plants in European and Asian energy markets
- · Core competence in thermal, hydro and nuclear power
 - Built on Fortum's knowledge and history as an energy producer
 - Over 300 employees delivering high quality expert services
 - Experience from projects in over 20 different countries
- Services to improve technical and economic performance of new and existing production capacity in
 - Bio-energy

5

- Energy from waste
- Combined cycle
- Gas, coal and peat fired power plants
- · Expert references cover hundreds of customers globally
- · Co-operation with various partners and networks
- Combining our top technical know-how with an economic view enables us to identify opportunities and turn them into measurable results
- Independence of equipment suppliers

Value Creation with Plant Lifecycle Management

Contents

©Fortum

Lifecycle Management built on expertise

Asset Lifecycle Management, Fortum practices

Risk-based Asset Lifecycle Management Implementing RBIM and RBLM

- Optimisation of O&M and Asset Management
- Defined and acceptable risk levels in relation to:
 - Safety, Health, Environment
 - Business/production/operation/availability
- Integrity related RBI:
 - Scenarios (structural damage)
 - Failure probability & consequences
 → Assessed risk
- Risk-based ranking of criticality and planning for cost-effective inspections and maintenance
- Planning for sustainability

RBI – risk-based inspections RBIM – risk-based inspections and management RBLM – risk-based life management

Source: "Risk Based Inspection Framework" (RBIF)

Availability & Reliability Management

ReMaint®: Criticality Analysis, RAMSTUDIO RAM Analysis and Maintenance and Spare parts investment decision **Optimisation**, FMEA/RCM Analysis support CMMS Audit and KPI's monitoring and Population reporting: Feedback Analysis **Disturbance reporting Problem Solving** Support: Training

Combined package including separate module services such as:

- Continuously improve your plant's performance

Joensuu Power Plant, Finland, an example

ProductionHeat production capacity Net electricity production capacity130 MW• At CHP operation mode50 MW• At Condensing operation mode50 MW• At Condensing operation mode70 MWProduction units at the plantPower plantHOBStart-up year1986Start-up year1986Fuel capacity (MW)20035Main fuel(s)Peat/ WoodYearly operation hours (h)7600Soller manufacturerAhlströmBoiler typeBFBBFBBFB	Ownership and personnelOwnership100 % FortOperation byFortumMaintenance byFortumStaff54• Operation29• Maintenance22• Asset Management etc.3	um		Pyrolysis Oil Production started 2013
Net electricity production capacity 	Production			
 At CHP operation mode 50 MW At Condensing operation mode 70 MW Production units at the plant Power plant HOB Start-up year 1986 2009 Fuel capacity (MW) 200 35 Main fuel(s) Peat/ Wood Peat/ Wood Yearly operation hours (h) 7600 ~4000 Boiler manufacturer Ahlström MW Power 	1 1 2	130 MW		
• At Condensing operation mode 70 MW Production units at the plant Power plant HOB Start-up year 1986 2009 Fuel capacity (MW) 200 35 Main fuel(s) Peat/ Wood Yearly operation hours (h) 7600 ~4000 Boiler manufacturer Ahlström MW Power		50 MW		A ALLAN CLEMENS
Start-up year19862009Fuel capacity (MW)20035Main fuel(s)Peat/ WoodPeat/ WoodYearly operation hours (h)7600~4000Boiler manufacturerAhlströmMW Power		70 MW		
Fuel capacity (MW)20035Main fuel(s)Peat/ WoodPeat/ WoodYearly operation hours (h)7600~4000Boiler manufacturerAhlströmMW Power	Production units at the plant	Power plant	НОВ	
Fuel capacity (MW)20035Main fuel(s)Peat/ WoodPeat/ WoodYearly operation hours (h)7600~4000Boiler manufacturerAhlströmMW Power	Start-up vear	1986	2009	
Main fuel(s)Peat/ WoodPeat/ WoodYearly operation hours (h)7600~4000Boiler manufacturerAhlströmMW Power		200	35	
Yearly operation hours (h)7600~4000Boiler manufacturerAhlströmMW Power		Peat/ Wood		
Boiler manufacturer Ahlström MW Power		7600	~4000	
Boiler type BFB BFB BFB		Ahlström	MW Power	
	Boiler type	BFB	BFB	

Fortun

Joensuu Investment planning & Lifetime Management project

Planning

- 1. Select systems and scope for lifetime assessment
- 2. Collect initial data and interview, utilize annual overhauls (e.g. periodic inspections)
- 3. Prepare preliminary inspection plan and budget

Implementation

- 4. Plan detailed inspections and allocate resources
- 5. Prepare and carry out inspection
- 5. Analyze inspection results
- 6. Recommend immediate improvements
- Establish lifetime assessment for critical parts, list of necessary long term actions and investment estimates

Fortum

A practical example at Joensuu Power Plant, Finland 2014-2015 Life assessment

Project

- What was found
- Collect existing data, inspection results, reports, experience, condition reports, maintenance and operational information
- Plan the needed inspections and measurements
- Implement inspections, measurements, assessments
- Analyze results
- Plan and schedule actions, update earlier plans and information in systems

- Creep damage in the main steam line (material X20CrMoV121)
- Hanger improvements needed
- Internal layer thicknesses affect life of a superheater
- RBI Risk assessment needed

 Possible safety risk, significant unavailability risk eliminated
 (over 220 000 operation hours)

More results

Additional life for the main components assessed: 100 000 hours

- Timing of new investments taking into account the life of the existing equipment
- Continuous safety
 improvement
- Timing of the correct investments -> benefits already on the short-term
- Risk assessments utilized

Some details in the Joensuu Lifetime Management project

Creep damage in the main steam pipeline found on time decision making

Samples examined to support

Important results

- No safety hazards
- Unavailability costs avoided
- Optimum timing for investments

Repair planned and carried out during the outage

- Work supported by laboratory studies Timing of superheater refurbishment supported by life assessment of tube samples
- Inside layer thickness, temperature follow-up etc.

New

Flue gas cleaning and heat recovery / flue gas condenser plant

15

Case 2: Eskilstuna Project, boiler plant refurbishment

Background

- Scope
- Eskilstuna Energi och Miljö AB (EEM) aims to extend the lifetime of the CFB boiler
- Turn-key project
- Public procurement tendering process
- Time schedule
 - Site work 1 April 1 July 2016
- Plant: 110 MW Biofuel CHP 57_{dh} MW Biofuel CFB (in this project)

Modernization of the boiler and auxiliary systems including

renewal of

- CFB boiler cyclones
- Start-up/support burners (2 pcs) with an oil pumping unit; possibility to bio-diesel firing
- Fuel day silo bottom and the hydraulic system
- Flue gas recirculation fan and ducts (partly)
- Bottom ash removal system incl. a new 'ash' building
- Soot blowers (6 pcs) for district heating ECO
- Extension of the SNCR -system
- All installation work is included

Outcome of the Eskilstuna Project

Emission reduction

 Extension of the existing SNCR system to fulfill the required emission limits

Production secured

- Safe and reliable production secured
- · Availability improvements

Life extension

The goal: life of the 30 years old boiler plant could be extended by 20 years

Contents

Asset Management Strategy

- Management system includes policies
 - Safety
 - Environment
 - Legislation and regulations
 - Resources
 - Organisation
 - Decision making criteria
 - Long-term objectives, sustainable outcomes, stakeholder requirements

- Continuous improvement
 - Development of assets, upgrading
 - Development of the management system

In Power Generation Asset Lifecycle Management

Asset Management system

- Data management
- Performance follow-up
- Condition report
- Long-term plans & other plans

Asset Lifecycle Management -- Asset Integrity

TOPGen®

Fortum TOPGen[®] O&M concept is a company specific way to set up O&M organization, management systems and selected IT tools at power plants and to operate and maintain power plants

21

Make your power plant efficient!

Basis for successful Plant Lifecycle Management, Fortum

Fortum approaches for condition monitoring in lifetime management

General services for production plants / Continuous Condition management

- Process thermal performance and energy efficiency monitoring
 IT-systems, process model, analysis and remote support
- Mechanical equipment condition management
 - Vibration monitoring for rotating machines
 - Structural mechanics analysis and studies
- Electrical equipment condition management
 Generators, high voltage motors, transformers
- Water and environmental chemistry management

In addition for power plants / Overhaul and projects

- · Combustion and boiler condition and lifetime management
 - Combustion modelling (CFD) for all boiler types and Low-NOx-burners
 - Combustion, fouling and corrosion monitoring including systems
 - Boiler and main steam line inspection planning and long-term plans
- Turbine and generator condition review, inspection, overhaul and modernisation
 - Including replacement of parts as well as control and protection systems

Maintenance development process, ReMaint®

Fortum

Case CHP plant – ReMaint®

Maintenance development

- Criticality Analysis based on risk assessments

 Waste-to-Energy plant 160 MW_{TH}
- FMECA^{*}) and RCM^{**}) analysis for the most critical system(s)
 - Fuel handling system
- Optimization of Preventive Maintenance (PM) programs and critical spare parts

Benefits for the Power Plant business

- Not anymore disturbances and unplanned shutdowns due to critical components (before c.a. 190 h / 11 y)
- Systematic, comprehensive and well-timed PM programs for critical components
- Outsourcing of routine maintenance, for example bearings lubrication
- Easy mobilization of critical spare parts, placed in site storage or near in spare pool

Reliability
Availability
Availability
Haintainability
Safety

*) FMECA = Failure Mode, Effect and Criticality Analysis **) RCM = Reliability Centered Maintenance

Systematic follow-up, performance indicators

- Performance: Performance indicators (KPIs), TOPi[®] (process performance), CMMS
- Management system: cPIP[®] auditing, reviews and internal audits at planned intervals
- Predetermined condition reports at planned intervals, scheduled long-term plans

	MPV	OVERVIEW	Menu	Help	Trend
Plant efficiency		Bolter efficiency 86 / 90 %	G	Generator po 75 / 70 MM	,
				Di 14	> 110 °C 1 power 7 MW
H		-			4

Main unit Condition Indexes					
	т	urbine	Generator		
Power plant/unit	Runn er	Distri butor	Stator	Rotor	
PL1 - G1	Very good	Very good	Very good	Very good	
PL2 - G2	Good	Fair	Good	Fair	
PL3 - G1	Poor	Poor	Very good	Good	
PL4 - G1	Fair	Fair	Poor	Poor	
PL5 - G2	Good	Good	Good	Good	

Audit, Analyse and Develop the use of CMMS

CMMS (computerized maintenance management) in the asset lifecycle management
Long-term planning
Investment projects
Daily operation and maintenance management and reports
Condition reports
Analysis, planning and budgeting support
Trutter further further projects
Trutter fur

Tools and methods for development Summary

- Assessment and auditing processes, Safari[®] and cPIP[®]
- Prioritization methods Criticality analysis (CA), RBI, analysis of production failures, condition and life cycle assessment
- Analysis methods Failure Mode and Effect Analysis (FMEA), Hazard and Operability Study (HAZOP), Cause & Effect Analysis and Root Cause Analysis, Problem Solving
- Integrated Management Systems (IMS), TOP*Gen[®]*, Maintenance Handbook, ReMaint[®]
- **Applications,** Miriam RAM Studio, Availability follow-up tool, Elmas

Integrated management system CFD modelling tools

Creating measurable value

Asset productivity and lifecycle profits developed by:

- Improving the performance and productivity of existing power plants
 - Availability, energy efficiency, O & M costs development and the productivity of investments
- Managing risks and the condition of main components, such as turbine, generator, boiler, etc.
- Utilizing advanced analysis and management tools
- Performing successful O & M introductions and start of the commercial operation for new power plants
- Improving both site-level O & M and asset productivity processes

Transition towards Solar Economy is ongoing

