Advanced control solutions for steam boilers and power plants

Efficiency and reliability

Difficulties with conventional solutions:

- Boiler is a highly interactive process
 - Example steam temperature control
- Process changes / disturbances
 - Slow (eg slagging...)
 - Fast (eg fuel heat value, failures...)
 - Load changes
- Slow asymmetric dynamics of boiler
 - Firing disturbances: O2→ Temperatures→ Pressure & Flow→ Electric power
 - Response depends on load level and fuel quality

Why go advanced?

- The complex boiler process can be **optimized**.
 - Stabilize the process
 - Cut down the margins

Impact on

- Utilization rate
- Utilization degree
- Efficiency
- Own consumption of electric power
- Maintenance
- Emissions

ÅF's solution: Balance+

Advanced control solution for steam boilers

- Differs from conventional solutions
- Self-learning calculation models
- Concepts for drum and once through boilers
 - Interactions between control loops into consideration
- Proven, patented technology

ÅF APC (advanced process control)

 We know: Process, control, instrumentation and measurement technologies, development of automation systems making it all possible.

Balance+ How?

- Concept uses process based adaptive calculation models
- Calculation models are based on available auxiliary measurements and previous behaviour of process.
 - → "Real-time" control also to slow variables
 - Disturbances can be compensated before they are shown in the controlled variable
 - Reduction of over and undershoot in control
 - Models adapt to process changes
 - Tuning parameters" can be defined from process values before commissioning

Balance+ How?

Balance+ calculation model

Conventional feedback PI-control

Balance+ How?

Benefits with better performance

- Utilization rate
 - Reduced downtime due to less actuator failures
 - Less stress to heat exchangers and masonry
 - Reduction of safety interlocking
- Utilization degree
 - More accurate control
 - Boiler can operate closer to designed maximum parameters (pressure, temperature, excess oxygen...)
- Efficiency
 - Less over and undershoot in combustion control
 - Higher steam temperature, Lower O2 content of the flue gases

Benefits with better performance

- Own consumption of electric power
 - Reduction of feed water pump, air- ja ID-fan power
 - Optimization of pressure losses and air flow
- Maintenance costs
 - Less wearing to actuators due to less control actions
 - Minimization of pressure differences reduces wearing
 - Reduced downtime expenses

Benefits with better performance

Friendly for environment

- Optimization of O2 level and stabilization of the combustion process
 - NOx-, CO- and particle exhausts
 - Tightened emission levels due to legislation
- Savings in some executed projects comparable to ~1% better efficiency
 - Balance+ valuation

IE-directive's discharge limits

Discharge limits tighten in 2016

	Biomass	Liquid fuels	Peat	Gas fuels	Mineral coal and brown coal
50-100 MW					
SO ₂	200	350 (850*)		35 (5**)	400
NO _x	300	450	300	100	300
Particles	30	30	30	5	30
СО				100	
100-300 MW					
SO ₂	200	250	300	35 (5**)	250
NO _x	250	200	250	100	200
Particles	20	25	20	5	25
со				100	

* Time of operation at maximum 1500 h/a **For liquefied petroleum gas

Innovation by experience

IE-directive's discharge limits

- Boiler's combustion control optimization to improve the emissions.
- Efficiency and NOx emissions can be optimized with more stable combustion control.
- The possibility to avoid or decrease expensive process investments or solutions based on secondary methods for taking emissions to the level of new requirements.
- Improvement possibilities have to be estimated according to each plant.

Flue gas' excess oxygen level effect to NOx

Optimization of terminal oxygen level on the grounds of CO-emission rate reduces NO_x – emissions. Stabilization of combustion power and air controls enables the boiler's running at lower terminal oxygen content than earlier.

 NO_x –emissions' dependence on air factor. As rule of thumb is considered that NO_x –emissions are directly proportional to the boiler's terminal oxygen level.

 In our projects made for forest industry we have been able to reduce boilers' combustion gas' excess oxygen level 0,5 - 2%. This means 15-40% reduction to NO_xemissions. (for example Kauttua).

Revision of boiler main controls strategy at a CFB boiler before after

Conventional boiler controls in use.

- Excess oxygen level decreased 2%
- NOx-emissions decreased 40%
- Fuel consumption decreased 1%

Learning calculation models in combustion and air controls.

Automaatioväylä magazine article 7/2010 about benefits achieved to Kauttua.

Innovation by experience