Advanced control solutions for steam boilers and power plants

Efficiency and reliability
Difficulties with conventional solutions:

- Boiler is a highly interactive process
 - Example steam temperature control

- Process changes / disturbances
 - Slow (eg slagging…)
 - Fast (eg fuel heat value, failures…)
 - Load changes

- Slow asymmetric dynamics of boiler
 - Firing disturbances: O2→ Temperatures→ Pressure & Flow→ Electric power
 - Response depends on load level and fuel quality
Why go advanced?

- The complex boiler process can be optimized.
 - Stabilize the process
 - Cut down the margins

- **Impact on**
 - Utilization rate
 - Utilization degree
 - Efficiency
 - Own consumption of electric power
 - Maintenance
 - Emissions
ÅF’s solution: Balance+

Advanced control solution for steam boilers

- Differs from conventional solutions
- Self-learning calculation models

- Concepts for drum and once through boilers
 - Interactions between control loops into consideration

- Proven, patented technology

ÅF APC (advanced process control)

- We know: Process, control, instrumentation and measurement technologies, development of automation systems making it all possible.
Balance+ How?

- Concept uses process based adaptive calculation models

- Calculation models are based on available auxiliary measurements and previous behaviour of process.
 - "Real-time" control also to slow variables
 - Disturbances can be compensated before they are shown in the controlled variable
 - Reduction of over and undershoot in control
 - Models adapt to process changes
 - "Tuning parameters" can be defined from process values before commissioning
Balance+ How?

Balance+ calculation model

Conventional feedback PI-control
Balance+ How?

![Graph showing temperature changes over time for Balance+ and Reference](image-url)
Benefits with better performance

- Utilization rate
 - Reduced downtime due to less actuator failures
 - Less stress to heat exchangers and masonry
 - Reduction of safety interlocking

- Utilization degree
 - More accurate control
 - Boiler can operate closer to designed maximum parameters (pressure, temperature, excess oxygen…)

- Efficiency
 - Less over and undershoot in combustion control
 - Higher steam temperature, Lower O2 content of the flue gases
Benefits with better performance

- Own consumption of electric power
 - Reduction of feed water pump, air- ja ID-fan power
 - Optimization of pressure losses and air flow

- Maintenance costs
 - Less wearing to actuators due to less control actions
 - Minimization of pressure differences reduces wearing
 - Reduced downtime expenses
Benefits with better performance

Friendly for environment

- Optimization of O2 level and stabilization of the combustion process
 - NOx-, CO- and particle exhausts
 - Tightened emission levels due to legislation

- Savings in some executed projects comparable to ~1% better efficiency
 - Balance+ valuation
IE-directive’s discharge limits

- Discharge limits tighten in 2016

<table>
<thead>
<tr>
<th></th>
<th>Biomass</th>
<th>Liquid fuels</th>
<th>Peat</th>
<th>Gas fuels</th>
<th>Mineral coal and brown coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-100 MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO_2</td>
<td>200</td>
<td>350 (850*)</td>
<td>300</td>
<td>35 (5**)</td>
<td>400</td>
</tr>
<tr>
<td>NO_x</td>
<td>300</td>
<td>450</td>
<td>300</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Particles</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>100-300 MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO_2</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>35 (5**)</td>
<td>250</td>
</tr>
<tr>
<td>NO_x</td>
<td>250</td>
<td>200</td>
<td>250</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Particles</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

* Time of operation at maximum 1500 h/a
** For liquefied petroleum gas
IE-directive’s discharge limits

- Boiler’s combustion control optimization to improve the emissions.
- Efficiency and NOx emissions can be optimized with more stable combustion control.
- The possibility to avoid or decrease expensive process investments or solutions based on secondary methods for taking emissions to the level of new requirements.
- Improvement possibilities have to be estimated according to each plant.
Flue gas’ excess oxygen level effect to NOx

Optimization of terminal oxygen level on the grounds of CO-emission rate reduces NOx – emissions. Stabilization of combustion power and air controls enables the boiler’s running at lower terminal oxygen content than earlier.

- In our projects made for forest industry we have been able to reduce boilers’ combustion gas’ excess oxygen level 0,5 - 2%. This means 15-40% reduction to NOx - emissions. (for example Kauttua).

NOx – emissions’ dependence on air factor. As rule of thumb is considered that NOx – emissions are directly proportional to the boiler’s terminal oxygen level.
Revision of boiler main controls strategy at a CFB boiler

before

- Excess oxygen level decreased 2%
- NOx-emissions decreased 40%
- Fuel consumption decreased 1%

after

Learning calculation models in combustion and air controls.

Automaatioväylä magazine article 7/2010 about benefits achieved to Kauttua.

Conventional boiler controls in use.